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SINGLE-KERNEL NEAR-INFRARED PROTEIN PREDICTION 
AND THE ROLE OF KERNEL WEIGHT IN 

HARD RED WINTER WHEAT

T. Bramble,  F. E. Dowell,  T. J. Herrman

ABSTRACT. A near-infrared single-kernel protein calibration for hard red winter wheat (Triticum aestivum L.) was developed
to support research mapping the variance structure of single-kernel protein in commercial wheat fields. The hierarchical
sampling design used to map the variance structure included fields, plots, rows, plants, heads, spikelet, and kernels from 47
fields containing the cultivars Jagger, 2137, Ike, or TAM 107. Each kernel was evaluated for protein content using an
automated single-kernel NIR system. Five hundred kernels were selected as the model development set and reference protein
content was determined using a combustion nitrogen analyzer. The resulting 11 factor PLS model had a standard error of
prediction based on a cross validation (SECV) of 1.21% and r2 = 0.84. Application of a kernel weight correction improved
model performance statistics (SECV = 0.40%, r2 = 0.89). A moderate negative correlation was observed (r = -0.55) between
kernel weight and protein content. Previous research exploring single-kernel protein had not documented this relationship.
The partial least squares model containing a kernel weight adjustment was most accurate with Jagger kernels (SECV =
0.32%, r2 = 0.92) and least accurate with TAM 107 kernels (SECV = 0.51%, r2 = 0.82). The application of the weight
correction factor resulted in a lower SECV than previous research. Currently, single-kernel protein analysis instruments have
not included a kernel weight apparatus, which represents a constraint in accurately predicting single-kernel protein using
NIR technology.
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-rotein content is an important indicator of bread
quality (Bushuk et al., 1969), with loaf volume gen-
erally increasing as protein content increases. How-
ever, protein content varies within wheat (Triticum

aestivum L.) fields, plots, rows, plants, heads, spikelets, and
position within spikelets (Bramble et al., 2002). Measuring
protein content in bulk samples will not give an accurate indi-
cation of the protein content variation since protein content
varies from kernel to kernel. Thus, technology and calibra-
tions are needed to automatically measure single-kernel pro-
tein content.

Near-infrared (NIR) spectroscopy has been commonly
used to measure protein content of wheat bulk samples (Hunt
et al., 1977), but only more recently for single-kernel protein
content. The original single-kernel work involved NIR
transmittance,  or passing energy through a kernel, to measure
protein content (Delwiche, 1995); however, there has been a
shift toward measuring reflected energy because it is easier
to automate this process (Wang et al., 1999). The pioneering
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work by Delwiche (1995) involved precise kernel placement
in front of the spectrometer that collected the kernel
transmittance  spectra from 740 to 1139 nm at 2-nm intervals,
but was limited to 500 kernels per class. Using a 14-factor
partial least squares (PLS) model, Delwiche obtained a
standard error of prediction (SEP), or standard deviation of
the differences in the measured and predicted protein values,
of 0.83% and r2 = 0.85. Delwiche (1998) investigated the use
of NIR reflectance as a means of determining single wheat
kernel protein content. In this work, kernels were hand-
placed on the end of a revolving tube. The 1100- to 1798-nm
range was used in the model development. Each kernel’s
spectrum was the average of 32 scans. This methodology,
using an 11-factor PLS model, resulted in a SEP of 0.59% .

In research to automate single wheat kernel protein
content measurements, Dowell et al. (1997) integrated a
DA-7000 diode-array spectrometer with a Single Kernel
Characterization  System (SKCS 4100) (Perten Instruments,
Stockholm, Sweden). This system, referred to as a SKCS
4170, automatically feeds single kernels to a viewing area
where visible and NIR spectra are collected over the
wavelength range of 400 to 1700 nm from randomly oriented
kernels. When using kernels randomly placed by the
automated system, a 19-factor PLS protein prediction model
resulted in a SEP based on a cross-validation of 0.75% and
r2 = 0.94. Hand-placed kernels with fixed orientation yielded
a SEP based on a cross-validation of 0.60% and r2 = 0.96,
indicating that random placement only slightly affects
prediction accuracy.

The work reported here describes the development of a
single-kernel protein prediction model for use in related
research to study the single-kernel protein variance structure
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in commercial wheat fields in western Kansas as reported by
Bramble et al. (2002). In the current study, single kernels
were sampled using a hierarchical sampling method such that
protein variance could be estimated for seven components in
a commercial wheat production system in southwest Kansas.
These components included variance among fields, among
plots in a single field, among rows in plots, between two
adjacent plants in a row, among heads on a plant, among
spikelets on a head, and between two kernels in a spikelet.
The nature of this work did not allow for bulk measurement
of protein, as individual kernels were uniquely identified by
their specific location within the sampling hierarchy. Protein
content was measured for each individual kernel in this
research requiring use of the SKCS 4170.

Therefore, a protein prediction model was developed for
this unique sample set of data using the SKCS 4170. In view
of the large variation in kernel protein content and weight
resulting from the hierarchical sampling of commercial
wheat fields, the objective of this research involved measur-
ing the accuracy of the SKCS 4170 for predicting protein
content of individual kernels. This sample set likely provides
a better assessment of single-kernel protein NIR measure-
ment compared to past studies and will help identify
constraints in single-kernel NIR technology.

MATERIALS AND METHODS
INDIVIDUAL WHEAT KERNEL SAMPLES

Single kernels of hard red winter wheat (HRW) were
collected from 47 fields under commercial production in
Stanton and Kearney counties in southwest Kansas. The four
cultivars in the study included Jagger (13 fields), 2137
(14 fields), Ike (11 fields), and TAM 107 (8 fields).

Sampling of the physiologically mature kernels occurred
just prior to harvest. Individual kernels were obtained from
three plots within each of the study fields. Individual heads
were sampled at random from each plant, kept intact, and
uniquely identified by field, plot, row, and plant location. The
sample collection procedure is described in Bramble et al.
(2002).

COLLECTION OF INDIVIDUAL KERNEL SPECTRAL DATA
Spectral data for each kernel were collected using the

Perten SKCS 4170 within three months of sample collection.
The spectrometer in this system measures reflected energy at
400 to 1700 nm. The spectrometer measures reflected energy
every 7 nm from 400 to 1100 nm, and every 11 nm from 1100
to 1700 nm. Kernels were hand-placed without regard to
orientation (crease up or down) resulting in an almost random
placement pattern in the sample bucket. Baseline readings
were run every 100 to 200 samples. The system sampled 8
spectra per kernel and stored the average.

PROTEIN MODEL DEVELOPMENT

A total of 500 kernels from the sample set were chosen
randomly, but in a manner such that every plot from each
sampled field was represented by at least one kernel. These
kernels, comprising the model development set, were
analyzed for nitrogen content (N*5.7) by combustion using
the LECO Model FP-428 nitrogen analyzer (St. Joseph,
Mich.) according to AACC Approved Method 46-30
(AACC, 2000). Samples were analyzed for protein content

within a few weeks after collecting spectra. This instrument
was calibrated prior to analysis, with the model development
set being run as a continuous lot and periodic test samples run
throughout.

The stored spectral data and the LECO combustion
nitrogen results were used to develop the single-kernel
protein prediction model using a partial least squares (PLS)
regression and a cross-validation. In a cross-validation, a
sample is removed and a calibration developed without it.
The removed sample is then predicted from the resulting
calibration and the residual recorded. The sample is then
replaced and another sample removed and a new calibration
is developed. The process is repeated until each sample has
been removed and predicted. The standard deviation of the
residuals is the SEP. All data were mean centered before
analysis. The number of factors chosen for the PLS model
was based on the minimum residual sum of squares.

The resulting protein prediction model was then applied
to the spectral data collected for the complete sample set, and
individual kernel protein contents were predicted. Model
performance was evaluated and reported as multiple coeffi-
cient of determination (r2), the standard error of cross-valida-
tion (SECV), and the ratio of the sample standard deviation
of the reference data to the standard error of cross-validation
(RPD) as described by Williams (2001). Individual kernel
data were analyzed using the descriptive statistics function
(α�= 0.05) in Excel� (Microsoft Inc., Redmond, Wash.).

RESULTS AND DISCUSSION
Figure 1 illustrates performance of the protein prediction

model by plotting model results against protein reference
values determined by the LECO combustion nitrogen
analyzer. The SECV for the 11 factor PLS model was 1.21%
with an r2 = 0.84. The prediction model for individual protein
content provided good results in the middle protein range
(10% to 20%); however, there is an apparent departure from
the ideal slope at protein contents greater than 20%. It
appears that the protein prediction model is under-predicting
kernel protein when the content is greater than 20%, although
there are too few kernels to validate this observation (fig. 1).
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Figure 1. Protein content prediction model performance: reference pro-
tein content plotted against predicted protein content.
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The protein prediction model developed here had a higher
error than previous models reported by Delwiche (1998) and
Dowell et al. (1997). Hruschka (2001) identified nearly 40
sources of error attributable to NIR spectroscopy. Of these,
sample variables and operational variables are the two major
sources of error affecting measurement accuracy. Sample
variables including kernel size, density, and color all affect
spectral measurement by influencing the absorption or
reflection of a wheat sample (Watson et al., 1977). The
repeatability  and reproducibility of the LECO protein
measurement method are about 0.15% and 0.27%, respec-
tively (Bicsak, 1993). There was a moderate negative
correlation between kernel weight and protein content (n =
500, r = -0.55, fig. 2). The correlation appears strongest for
kernels with the highest weights. Other researchers did not
find a kernel weight to protein correlation (Delwiche, 1995;
Dowell et al., 1997; Delwiche, 1998) in previous single-ker-
nel prediction model development. In those studies, kernels
were obtained from commercial samples taken from lots
from multiple locations throughout the Midwest. However,
Wilkins et al. (1993) showed that protein content is inversely
related to kernels size, particularly for non-irrigated wheat.
For development of the model reported here, 10,150 kernels
were sampled randomly from fields in southwest Kansas
prior to mechanical harvesting. The 500 kernels included for
use in model development were randomly obtained from this
sample set and included without regard to size, color, or
condition (table 1). Individual kernels displayed a range in
protein content from 7.2% to 23.8% and kernel weight ranged
between 5 to 43 mg. The kernel population displayed a
normal distribution for weight and protein measurements for
each cultivar, with the exception cultivar 2137 protein
content, which displayed a positive skewness at a 95%
confidence level. The individual kernel properties included
in this study may not have been masked by mixing with
samples from other growing regions as were the kernels used
in previous studies. This enabled detection of the influence
of kernel weight. This could be one possible explanation for
the kernel weight correlation and the slightly higher SECV
for our prediction model over previously reported models.

Thus, based on the findings by Wilkins et al. (1993) the
model performance could be improved by using a weight-
corrected average protein value. To achieve this end, the
product of individual kernel weight and protein measures
were multiplied by a weight-corrected protein factor calcu-
lated in equation 1:

Paverage = �pimi / �mi (1)

where Paverage is the weight-corrected protein and p and m
represent the measured protein and kernel mass for the
individual kernels (i). The difference between the predicted
and actual individual weight-protein corrections were used to
calculate the SECV. The weight correction yielded a plot
much closer to the ideal slope (fig. 3). The SECV improved

from 1.21% to 0.40% and the r2 was slightly improved from
0.84 to 0.89.

To further evaluate this transformation, scatter plots of the
residual errors for the original model (no weight correction)
and predicted protein values were plotted (figs. 4, 5). The
weight-corrected  transformation had some effect, as evi-
denced by a slight flattening of the residual scatter plot, and
the modest improvement in the performance statistics.

The ratio of the sample standard deviation to the standard
error of cross-validation (RPD) for the protein prediction
model was 2.58 without the kernel weight correction.
Delwiche (1995) reported RPD’s ranging from 2.88 for soft
red winter wheat to 4.72 for hard white winter wheat. While
just outside the lower end of their range, our RPD of 2.58
indicates an adequate standard deviation of the prediction
model relative to the amount of variability found in the
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Figure 2. Protein content vs. kernel weight correlation.
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Figure 3. Weight-corrected protein content prediction model perfor-
mance.

Table 1. Individual kernel protein and weight by cultivar as used for model development.

Protein Weight

Cultivar N Mean (%) Std. Dev. Skewness Mean (mg) Std. Dev. Skewness

Jagger 139 14.2 2.9 0.09 25.0 0.7 0.06

Ike 121 13.3 2.5 0.58 26.9 0.7 0.04

2137 152 13.1 3.2 0.94 25.4 0.7 -0.10

TAM 107 88 14.7 3.3 0.02 24.6 0.8 0.09
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Figure 4. Residual scatter plot.
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Figure 5. Residual scatter plot of weight-corrected protein content predic-
tion model results.

sample set as a whole. The inclusion of the individual
kernel weight correction improved the RPD to 7.69, which is
considerably better than reported for prediction models that
do not include weight.

The protein prediction model was developed using the
entire sample set, but the model performed differently with
each of the four cultivars (table 2). The model incorporating
kernel weight was most accurate when predicting protein
content of individual Jagger kernels with an SECV of 0.32%,
r2 of 0.93, and a RPD of 9.15. Model performance was also
strong when predicting protein content of Ike (SECV =
0.36%, r2 = 0.90, RPD = 6.9). The prediction model
performed less consistently when evaluating kernel protein
content for 2137 (SECV = 0.43%, r2 = 0.79, RPD = 7.58) and
TAM 107 (SECV = 0.51%, r2 = 0.82, RPD = 6.77). The
reasons for this inconsistency may be due to the kernel
characteristics themselves (table 1), as evidenced by the
larger standard deviation in kernel protein content and

weight. In addition, 2137 was not normally distributed. For
2137, the weight correction factor did not improve the
prediction model’s coefficient of determination (table 2),
which may also be attributable to individual kernel weight
skewness.

CONCLUSION
This research documented the development and applica-

tion of a single-kernel protein prediction model using
instrumentation  developed for industry and research applica-
tions. An 11-factor PLS protein prediction model was
developed using hand-collected single-kernel samples from
fields under commercial production in southwest Kansas.
Model performance was slightly outside the range of
previously published single-kernel NIR results, but the
model development process and research application of this
model may more closely mirror the type of use and variability
found in a commercial wheat production setting.

There was a correlation between kernel weight and protein
content for the entire data set that had not been seen in
published single-kernel NIR model development work. This
correlation affects model performance at the high end of the
protein range (>20%) where the model appeared to be
under-predicting protein content. The use of a weight
correction factor reduced the standard error of calibration and
coefficient of determination.

The model performance statistics differed for each of the
varieties, with variety Jagger performing best, followed by
Ike, 2137, and TAM 107. When applying the model to the
research application for which it was developed (Bramble
et al., 2002), the model appeared to perform satisfactorily.
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